olefin and carbon monoxide behind the center of the palladium focal point. The molar ratio of AlCl_{3} in the catalytic system also strongly affects on the yield of the target products. An increase in the $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2-}$ $\mathrm{PPh}_{3}-\mathrm{AlCl}_{3}$ ratio from 1:8 to 1:9 led to an increase in the yield of target products from 72.6 to 80.7%; a further increase in the excess of AlCl_{3} reduces the yield of the target product. No solvents were used in this reaction, and the ratio of the starting reagents affected the product yield. With the ratio $\left[\mathrm{C}_{8} \mathrm{H}_{10}\right]:\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=661: 435$, the product yield is 72.3%; further reduction to $\left[\mathrm{C}_{8} \mathrm{H}_{10}\right]:\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=435: 435$ gives the highest product yield of 80.7%, but further reduction to $\left[\mathrm{C}_{8} \mathrm{H}_{10}\right]:\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=217.5: 435$ reduces the yield of the target product

Table 1
Hydroethoxycarbonylation of cyclohexene in the presence of the $\mathbf{P d C l}_{2}\left(\mathbf{P P h}_{3}\right)_{2}-\mathbf{P P h}_{3}-\mathbf{A l C l}_{3}$ system

Exp. no.	$\left[\mathrm{C}_{8} \mathrm{H}_{10}\right]:\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$	$\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]:\left[\mathrm{PPh}_{3}\right]:\left[\mathrm{AlCl}_{3}\right]$	$T,{ }^{\circ} \mathrm{C}$	$P_{\mathrm{CO}}, \mathrm{MPa}$	τ, h	Product yield, $\%$
1	$661: 435$	$1: 6: 9$	120	2.5	5	72.3
2	$435: 435$	$1: 6: 9$	120	2.5	5	80.7
3	$217.5: 435$	$1: 6: 9$	120	2.5	5	55.6
4	$435: 435$	$1: 6: 8$	120	2.5	5	72.6
5	$435: 435$	$1: 6: 10$	120	2.5	5	74.2
		$1: 6: 9$				
6	$435: 435$	$1: 6: 9$	110	2.5	5	66.7
7	$435: 435$	$1: 6: 9$	120	3.0	5	65.8
8		$1: 6: 9$	120	2.0	5	68.0
9	$435: 435$	$1: 6: 9$		120	2.5	4
	$435: 435$	$1: 6: 9$	120	2.5	6	68.5
10	$435: 435$					
11	$435: 435$					

Thus, it was found that the three-component catalytic system $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{PPh}_{3}-\mathrm{AlCl}_{3}$, which contains AlCl_{3} as a promoter in the carbonylation reaction of cyclohexene at a low carbon monoxide pressure (2.5 MPa), exhibits high catalytic activity. As a result, the following effective parameters were identified: $\left[\mathrm{C}_{6} \mathrm{H}_{10}\right]:\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]:[\mathrm{Pd}]:\left[\mathrm{PPh}_{3}\right]:\left[\mathrm{AlCl}_{3}\right]=435: 435: 1: 6: 9, \mathrm{P}_{\mathrm{CO}}=2.5 \mathrm{MPa}, \mathrm{T}=120^{\circ} \mathrm{C}, \tau=5 \mathrm{~h}$. Under the developed optimal reaction conditions, the yield of ethyl ester of cyclohexanecarboxylic acid was 80.7%.

The study and identification of the fractionated product was carried out as mentioned above (experimental part), by gas chromatography method (shown in Figure 1). On the chromatogram we can observe a change in the value of the total ion current at the 19th minute of exposure, which, in turn, indicates the presence of the target product - ethyl ester of cyclohexanecarboxylic acid (at the 1st minute - unreacted ethanol; at the 3rd minute - unreacted cyclohexene).

Figure 1. GC analysis of target product

