olefin and carbon monoxide behind the center of the palladium focal point. The molar ratio of AlCl₃ in the catalytic system also strongly affects on the yield of the target products. An increase in the $PdCl_2(PPh_3)_2$ – PPh_3 –AlCl₃ ratio from 1:8 to 1:9 led to an increase in the yield of target products from 72.6 to 80.7 %; a further increase in the excess of AlCl₃ reduces the yield of the target product. No solvents were used in this reaction, and the ratio of the starting reagents affected the product yield. With the ratio $[C_8H_{10}]:[C_2H_5OH] = 661:435$, the product yield is 72.3 %; further reduction to $[C_8H_{10}]:[C_2H_5OH] = 435:435$ gives the highest product yield of 80.7 %, but further reduction to $[C_8H_{10}]:[C_2H_5OH] = 217.5:435$ reduces the yield of the target product.

Table 1

Exp. no.	[C ₈ H ₁₀]:[C ₂ H ₅ OH]	[PdCl ₂ (PPh ₃) ₂]:[PPh ₃]:[AlCl ₃]	<i>T</i> , °C	P _{CO} , MPa	τ, h	Product yield, %
1	661:435	1:6:9	120	2.5	5	72.3
2	435:435	1:6:9	120	2.5	5	80.7
3	217.5:435	1:6:9	120	2.5	5	55.6
4	435:435	1:6:8	120	2.5	5	72.6
5	435:435	1:6:10	120	2.5	5	74.2
6	435:435	1:6:9	130	2.5	5	66.7
7	435:435	1:6:9	110	2.5	5	65.8
8	435:435	1:6:9	120	3.0	5	68.0
9	435:435	1:6:9	120	2.0	5	43.4
10	435:435	1:6:9	120	2.5	4	68.5
11	435:435	1:6:9	120	2.5	6	77.2

Hydroethoxycarbonylation of cyclohexene in the presence of the PdCl₂(PPh₃)₂-PPh₃-AlCl₃ system

Thus, it was found that the three-component catalytic system $PdCl_2(PPh_3)_2-PPh_3-AlCl_3$, which contains $AlCl_3$ as a promoter in the carbonylation reaction of cyclohexene at a low carbon monoxide pressure (2.5 MPa), exhibits high catalytic activity. As a result, the following effective parameters were identified: $[C_6H_{10}]:[C_2H_5OH]:[Pd]:[PPh_3]:[AlCl_3] = 435:435:1:6:9$, $P_{CO} = 2.5$ MPa, T = 120 °C, $\tau = 5$ h. Under the developed optimal reaction conditions, the yield of ethyl ester of cyclohexanecarboxylic acid was 80.7%.

The study and identification of the fractionated product was carried out as mentioned above (experimental part), by gas chromatography method (shown in Figure 1). On the chromatogram we can observe a change in the value of the total ion current at the 19th minute of exposure, which, in turn, indicates the presence of the target product – ethyl ester of cyclohexanecarboxylic acid (at the 1st minute — unreacted ethanol; at the 3rd minute — unreacted cyclohexene).

Figure 1. GC analysis of target product